SCHEME – E

Sample Question Paper – I

Course Name	e :- Electronics Group	
Course code	:- EE/EP/ET/EN/EX/IE/IS/IC/DE/EV/MU/ED/EI	
Semester	:- Third	12054
Subject	:- Applied Mathematics	
Time	:- 3 hours	Marks: 100

Instructions: 1) All the questions are compulsory.

- 2) Figures to the right indicate full marks.
- 3) Assume suitable additional data if necessary.
- 4) Use of pocket calculator is permissible.

Q.1 Attempt any TEN of the following:

- a) Evaluate $\frac{1}{1+x^2} + e^{5x} dx$
- b) Evaluate $\left(x+\frac{1}{x}\right)^2 dx$
- c) Evaluate $xe^x dx$
- d) Evaluate $\int_0^2 \frac{5x}{x^2+4} dx$
- e) Find the order and degree of the differential equation $\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 = 5$
- f) Solve the differential equation $x\frac{dy}{dx} - y = 0$
- g) Find the equation of the curve whose slope is (x-3) and which passes through (2,0)
- h) Find $L(2+3t-e^{-t})$

i) Find
$$L(t^2e^{3t})$$

j) Find
$$L^{-1}\left(\frac{6}{2s-3}\right)$$

k)
$$\int \frac{dx}{(x+1)(x+2)}$$

1) Verify that
$$y=e^{-x}$$
 is a solution of $\frac{d^2y}{dx^2} - y = 0$

Q.2 Attempt any FOUR of the following:

16 Marks

a) Form the differential equation if

$$y = Ae^{3x} + Be^{-3x}$$

- b) Solve the differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$
- c) Solve $x \log x \frac{dy}{dx} + y = 2 \log x$
- d) A particle starting with velocity 6m/sec has an acceleration $(1-t^2)m/\sec^2$. When does it first come to rest? How far has it then traveled?
- e) Solve $(2x+3\cos y) dx + (2y-3x\sin y) dy=0$
- f) Obtain Fourier series for f(x) = x in the internal $(-\pi, \pi)$

Q.3 Attempt any FOUR of the following:

- a) Find $L[\sin 4t \cos 2t]$
- b) Find $L[e^{-2t}(3\cos 4t 2\sin 3t)]$

c) Find
$$L^{-1}\left[\frac{s+1}{s^2+s+1}\right]$$

d) Solve by using L.T.

$$3\frac{dx}{dt} + 2x = e^{3t}$$
 if $x(0) = 1$

- State and apply convolution theorem $L^{-1}\left[\frac{1}{s(s-1)}\right]$ e)
- f) Find L(Cos³ 2t)

Q.4 Attempt any FOUR of the following:

a) Evaluate

$$\frac{(Sin^{-1}x)^3}{\sqrt{1-x^2}}$$

b) Evaluate

$$\frac{1}{(x+1)(x+2)(x+3)} dx$$

c) Evaluate
$$\int_{1}^{3} \frac{dx}{\sqrt{x^2 - 6x + 13}}$$

d) Evaluate
$$\int_{0}^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x + \sqrt{\sin x}}} dx$$

- Find the area of circle $x^2 + y^2 = r^2$ by integration e)
- f) Find R.M.S. value of an alternating current I = 10 sin 100 π t

Q.5 Attempt any FOUR of the following:

- Using Bisection method find the approximate root of the equation a) $x^{3} - x - 4 = 0$ (carry out three iterations only)
- b) Find a root of the equation $x^{3} - 2x - 5 = 0$ using regular falsi method (up to 3 iterations)
- Using Newton Raphson method to evaluate c) $\sqrt{10}$ correct to three decimal places
- Solve the following equations by Gauss Elimination method d) 2x + 3y + z = 13, x + y - 2z = -1, 3x - 4y + 4z = 15
- Solve the following equation by Jacobi's method e) 10x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15

Q. 6 a) Attempt any ONE of the following:

- Obtain the half range cosine series for f(x) = x over $(0, \pi)$ a)
- b) Obtain Fourier series for

16 Marks

16 Marks

 $f(x) = x - x^2$ in the internal (1, -1)

b) Attempt any TWO of the following:

a) Evaluate $\int x \tan^{-1} x dx$

b) Evaluate
$$\int \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$$

c) Find mean value of an alternating current I = asint over $(0, \pi)$